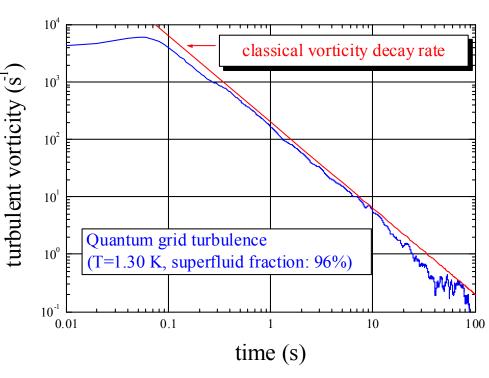

Collaborative Research: the Physics of Thermal and Superfluid Turbulence [Part 1 of 3: turbulent convection]

J. J. Niemela, K.R. Sreenivasan & R.J. Donnelly, DMR 0202554

- Turbulent convection is ubiquitous in our Universe and plays a prominent role in stellar heat transport, atmospheric and oceanic dynamics, generation of the earth's magnetic field, continental plate tectonics, and many engineering applications.
- •This complex, chaotic flow contains many small scale features, such as thermal plumes, which appear to selforganize into a coherent large scale circulation (see the leftmost figure, derived from experimental data).
- •This same organization, seen in our recent measurements is also evident in simulations of the Sun (see figure on far right).


Left: Schematic of large scale circulation deduced from observations of the self-organized flow in turbulent convection experiments. (Full line: low Rayleigh numbers; dashed line: high Rayleigh numbers.) This circulation occasionally reverses itself completely, just as the polarity of the earth's magnetic field does.

Right two: Simulation plots of stellar convection (from NSF Report: "Computation as a Tool for Discovery in Physics") showing (left) fine scale granulation on the solar surface masking (right) a single self-organized circulation inside (color coding depicts temperature). Despite differences, the laboratory experiments appear to shed light on the turbulent motion inside stars.

Collaborative Research: the Physics of Thermal and Superfluid Turbulence (Part 2 of 3)

R. J. Donnelly, J. J. Niemela & K. R. Sreenivasan, DMR 0202554

- Understanding of fluid turbulence is vitally important because it occurs in most fluid flows, and is a paradigm of strongly nonlinear problems.
- Our study of quantized turbulence (QT) reveals strong quantitative similarities with classical turbulence (see figure).
- It is likely that the understanding of quantum turbulence will ultimately provide a key to the elusive theoretical framework of classical turbulence.
- Understanding QT may be important also for the application of superfluid helium as a coolant for superconducting devices.

The decay of turbulent *quantized* vorticity generated by a moving grid in superfluid helium. The close correspondence with the classical decay rate is both unmistakable and astounding.

Collaborative Research: the Physics of Thermal and Superfluid Turbulence [Part 3 of 3: Education/Outreach] K.R. Sreenivasan, R.J. Donnelly & J.J. Niemela, DMR-0202554

Education and outreach

- At the University of Oregon undergraduate Ian Sullivan has worked on experiments aimed at understanding vortex dynamics in classical fluids and is the recipient of a Goldwater fellowship.
- At the International Center for Theoretical Physics (ICTP) in Trieste, Italy, data obtained with the cryogenic thermal convection apparatus under this grant were analyzed by a Diploma student from Albania, Margarita Kuqali. Having completed her Diploma thesis (recognized as a Master's thesis at the University of Tirana), Margarita will continue her education towards a Ph.D. utilizing apparatus made possible through this grant.
- Also at ICTP, two new students from developing countries are working towards their Ph.D and Master's degrees respectively: Muhammed Raheel Mohyuddin from Pakistan, and Andrei Gorobets from Ukraine.